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Method for computing the three-dimensional capacity dimension from two-dimensional projections
of fractal aggregates
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The current theory of projections of fractals is considered in this paper with application to fractal aggregates.
In particular, this theory does not accurately enable the computation of the capacity dimension of three-
dimensional aggregates from the capacity dimension of their two-dimensional projections. Herein we propose
to compute the three-dimensional capacity dimension from the perimeter-based fractal dimension, using a
semiempirical equation, an approach not applied earlier.
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I. INTRODUCTION

Fractal geometry is widely recognized to be fundamen
in scaling a variety of properties of aggregates of vario
nature. The fractal approach has been fruitfully employ
for instance, in sedimentology~mud flocs, bed structure
@1–3#!, chemistry ~polymers, colloidal aggregates@4,5#!,
medicine~cancer growth, cell structure@6#!, cosmology~gal-
axy distributions and patterns at large scales@7,8#!, and many
other disciplines dealing with fractal aggregates.

In general, analysis of fractal aggregates inR3 is based on
optical projections inR2. However, the transformation o
projectionP:R3→R2 distorts the three-dimensional~3D! in-
formation of an aggregate, especially concerning its geom
ric organization. One of the most convenient tools to d
scribe the geometric structure of a fractal set is
generalized dimensionalitydq , proposed by Hentschel an
Procaccia in@9#. It is defined as follows: if we consider ane
covering,Rn by means of boxes of sizee of a fractal of
length scaleL, then N5(L/e)n5,n is the total number of
boxes in the domain. IfNi is the number of measuring poin
in the i th box andNf the total number of points of the fracta
then pi5Ni /Nf determines the probability of a measurin
point lying in thei th box. Consequently, the generalized d
mensionality of theqth order is written as follows:

dq5
1

12q
lim
e→0

ln(
i 51

N

~pi !
q

ln e
, ~1!

whereq is a moment that gives strength to the probabil
pi . The capacity dimensiondC @10#, the information dimen-
sionsdI @11–13# and the correlation dimensiondK @14# are
special cases ofdq : d05dC , d15dI , and d25dK , with
d2<d1<d0<n. A basic property of the generalized dime
sionality is thatdq5const;q for fully self-similar and ho-
mogeneous fractals~monofractal sets!, while an infinite
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number of dimensions~all represented bydq) is required to
describe statistical self-similar, nonhomogeneous frac
~multifractal sets!.

The dimensionalitydq has been further elaborated for a
plication purposes into the corresponding multifractal sp
trum f (a) and singularity strengtha(q) @9,15–17#. These
quantities describe any arbitrary mass-density distribution
a nonhomogeneous fractal@17,18# and its growth rate
@14,19–22#. The relevance of evaluating the fractal prope
ties of aggregates stems from those fundamental works
substance, the possibility of determining the fractal dime
sions of an aggregate from its projection would make
characterization of the aggregate more complete. In part
lar, the capacity dimensiond0 should be accessed as it pla
a role in the nonlinear relationship between the massM of an
aggregate and its length scaleL:M;Ld0, and nevertheless in
a number of other quantities such as the effective den
porosity, etc.@3,5,23#.

However, direct computation ofdq from projections of
real aggregates is limited by geometric constraints. This w
shown by early investigations which were addressed to
derstand mathematically how projectionsP affect dq @8,24#.
In particular, Hunt and Kaloshin@24# have elaborated thatP
preserves the 3D information only for a limited range
momentsq (1,q<2), thus leaving unsolved questions r
lated tod0, which have direct implication to applied scienc
and measurement techniques.

The main contribution of this paper is to show that it
possible to extract the 3D capacity dimension of fractal
gregates from their projections by following an alternati
path. The paper is organized as follows. Section II summ
rizes a literature-based survey on the theoretical limits
which dq is subject in the case of projections of nonhom
geneous,extensivefractals. Furthermore, we give numeric
evidence that the application of the theory to nonhomo
neousfinite fractals yields distorted results, especially for t
capacity dimensiond0. We infer that the finiteness of the se
causes these distortions~real fractal aggregates in contrast
extensive fractals!. Section III is dedicated to the analysis o
those results. In addition, we propose an analytical formu
tion capable of circumventing the limits exposed in Sec.
This formulation is founded upon geometry arguments a
fitting numerical results.
©2004 The American Physical Society05-1
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II. PROJECTIONS AND GENERALIZED
DIMENSIONALITY

A. Problem definition

Hunt and Kaloshin@24# have observed that the projectio
P:Rm→Rn of a fractalSm,Rm of generalized dimensional
ity dq(Sm) onto Rn ~with n,m), yields to

dq„Sn5P~Sm!…5min$n,dq~Sm!%. ~2!

If dq(Sm).n then the projectionSn has dimensionality
dq(Sn)5n, otherwisedq(Sn)5dq(Sm). When the projection
has the same dimensionality as the original (dq(Sm)<n),
thenP is called adimension-preservingtransformation. This
relation has been proven analytically in@24# only for values
of the momentq:1,q<2. P is not dimension-preserving
for q<1 andq.2. In other words, only the correlation d
mensiond2 and the infinite number of dimensions betwe
d2 and the information dimensiond1 are preserved. All othe
dimensions are not preserved, the capacity dimensiond0 in-
cluded. This implies that for projections of real objec
(m53 and n52), the capacity dimensiond0(S3) (q50)
cannot be found from Eq.~2!:

d0~S2!Þmin$2, d0~S3!%. ~3!

It follows that we cannot use the 2D capacity dimens
d0(S2) of a projection to characterize the 3D capacity dime
sion d0(S3) of the original object in a direct way, at lea
theoretically, even whend0(S3),2.

Moreover, Eq.~2! is deduced from the literature to b
valid for indefinitely extensive fractals. However, no prec
distinction has been made in literature for finite fractals, su
as aggregates. For this reason, we must first consider wh
Eq. ~2! is applicable to 2D projections of fractal aggregat
because these arenonhomogeneous, finite, andclosed~com-
pact! sets. Indeed, images of fractal aggregates consist o
complete closed sets, that is the sets themselves and
boundaries. Furthermore, such sets are self-similar only o
limited ranges of length scales. This is in contrast to s
similar ~mono! fractal sets. Monofractals are, at least the
retically, open and homogeneous sets because any obs
tion window replicates any other window, at any sca
according to the concept of self-similarity. The conseque
of dealing with non-homogeneous finite and closed object
that the application of Eq.~2! becomes less clear and liab
to divergencies and misunderstandings@22#.

We therefore compare in the next section theoretical v
ues ofd0(S2) @via Eq. ~2!# and numerical values~via com-
puter simulations! of nonhomogeneous random fracta
From this test we will learn that Eq.~2! is not able to return
accurate results, thus preventing the computation ofd0(S3)
from d0(S2). Next, we propose an alternative semi-empiric
equation to computed0(S3) accurately.

B. Application of Eq. „2… to artificial fractal aggregates

Fractal aggregates are nonhomogeneous, finite, and cl
random sets of connected seeds distributed within the
main. Furthermore, they are statistically self-similar w
01140
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multifractal properties. Herein, we test the applicability
Eq. ~2! on artificial aggregates.

We first generatenr fractal aggregatesS3,R3 by means
of a simple algorithm which produces self-correlated rand
structures with known capacity dimensiond0. This technique
is a static aggregation algorithm. Seed-by-seed diffusion
cluster-cluster reactions are not accounted for. Starting wi
single~cubical! seedi 51, a second seedi 52 is placed ran-
domly in one of the 3-by-3-by-3 free, neighbor location
Then, one of the existing seeds is chosen from an expon
tial distribution, and a new seed is attached to it. In t
algorithm, recent seeds~large indexesi ) have higher prob-
abilities to receive a new seed. This procedure is repeated
1000 seeds. The capacity dimensiond0(S3) of the aggregate
under construction is tuned by means of the exponent of
exponential distribution. The resulting setsS3 are aggregates
with few open branches, more similar to CCA aggrega
than DLA aggregates@10,21#. The nr setsS3 are afterwards
projected along the three Cartesian directions, thus obtain
the projections

$S2,x
( j )%,$S2,y

( j )%,$S2,z
( j )%, ~4!

with j 5$1, . . . ,nr% the repetition index. Three examples
S3

( j ) and their projections are given in Fig. 1. For each of t
3nr projections, we compute the capacity dimensiond0 ac-
cording to Vicsek@10#:

d0~S2,$x,y,z}
( j ) ,X!5

log@N#

log@X#
, ~5!

where N is the number of seeds in the projection andX
5$L2 ,L3 ,D2 ,D3% are the length scales taken into accountL
is the size of the minimum hypercube envelopingSandD is
the hydraulic diameter, inR2 and R3, respectively. The
length scales$L3 ,D3%,R3 are known from the construction
of the aggregates while the length scale$L2 ,D2%,R2 result
from the transformationP. Next, we compute the averag
capacity dimensionsd0(S2

( j )) of the projections for eachj th

aggregate as follows:

d0~S2
( j ) ,X!5

1

3
@d0~S2,x

( j ) ,X!1d0~S2,y
( j ) ,X!1d0~S2,z

( j ) ,X!#.

~6!

depending on the used length scales. The reason to con
different length scales comes from a misuse of them in
application to real cases.

Now, we consider the capacity dimensio
d0(S3 ,$L3 ,D3%), computed as a function ofL3 and D3
solely.

The relationship betweend0(S2
( j ) ,X) and d0(S3

( j ) ,L3) is
given in Fig. 2, while the relationship betweend0(S2

( j ) ,X)
andd0(S3

( j ) ,D3) is given in Fig. 3. Both these experiment
sets deviate largely from Eq.~2! for all the length scales her
considered. In particular, Eq.~2! tends to overestimate th
real values both for low- and high-dimensional aggregate

Thus we have shown that, for nonhomogeneous, fin
and closed fractal aggregates, Eq.~2! does not enable a direc
5-2
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FIG. 1. ~a! Example of a high-fractal-dimension aggregate,S3
(1) , d0(S3

(1))52.49. The projections show a massive and round-sha
organization of the primary particles.~b! Example of a mid-fractal-dimension aggregate,S3

(14) , d0(S3
(14))52.09. The projections show a les

massive and irregular-shaped organisation of the primary particles.~c! Example of a low-fractal-dimension aggregate,S3
(30) , d0(S3

(30))
51.81. The projections show a weak and irregular-shaped organization of the primary particles.
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extraction ofd0(S3) from d0(S2), even ford0(S3),2. This
was already stated in Eq.~2! and derived analytically in@24#
for extensive fractals.

III. DIRECT COMPUTATION OF d0„S3… FROM THE
PROJECTION S2

A. Perimeter of fractal sets

From the previous results, we have found confirmat
that information concerning thecapacity ~the capacity di-
mension, that is the space-filling ability! is polluted by the
projection itself, even ford0(S3),2. Hence, we analyze an

FIG. 2. 2D capacity dimensiond0(S2
( j ) ,X) of the projections

S2
( j ) ~dots! as a function of the 3D capacity dimensiond0(S3

( j ) ,L3).
They have been compared to the theoretical relation, comp
through Eq.~2! ~solid line!.
01140
n

other set belonging to the projection, which is independen
nearly independent of the transformation: the contour of
projected setS2. The contour is a subset of the surface ofS3.
The measure of the contour, that is the perimeter, does
represent a capacity ofS3. The perimeter, or better the pe
rimeter segmentation reflects the roughness of the objec
R3.

Herein, we investigate to which extent the information
the structure inR3 can be found in the projected, perimete
based fractal dimensiondP , which is defined for instance in
@21#. dP does not belong~or give evidence of belonging! to
the set of dimensions indq . As a consequence, the theory

ed

FIG. 3. 2D capacity dimensiond0(S2
( j ) ,X) of the projections

S2
( j ) ~dots! as a function of the 3D capacity dimensiond0(S3

( j ) ,D3).
They have been compared to the theoretical relation, comp
through Eq.~2! ~solid line!.
5-3
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F. MAGGI AND J. C. WINTERWERP PHYSICAL REVIEW E69, 011405 ~2004!
projection does not apply todP , and therefore it is not sub
ject to the rule of Eq.~2!. However, it still gives information
on the fractal structures of aggregates. For this reason,
because of a lack of theoretical work dealing with this pro
lem, we perform a simple numerical experiment on the c
relation betweend0(S3

( j ) ,L3) and dP(S2
( j )), thus neglecting

the length scalesL2 , D2, andD3.

B. Perimeter-based fractal dimension of the projections

The perimeter-based fractal dimensiondP is defined ac-
cording to@21#:

dP52
log@P#

log@A#
, ~7!

where P and A represent the perimeter and the area o
projection. Within our context,A is given by the number o
seeds within the projected area andP is given by the number
of seeds on the contour.

By means of simple geometry arguments, we compute
values ofdP for the two extreme cases of thin line and ma
sive box projections. Let us therefore consider ane covering
of the setS2 of length scaleL2 by means of boxes of sizee,
corresponding to a resolution,5L2 /e. The values ofdP
then depend on the resolution,, as elaborated in the two
following cases.

Thin line. Let us consider the case of a projection whi
becomes a thin line for increasing resolution,e@1,̀ ), Fig.
4~a!. In that case

P[A5,, ,e@1,̀ !,

and, using Eq.~7!, the resultingdP becomes

dP52
log@P#

log@A#
52

log@,#

log@,#
52, ,e@1,̀ !. ~8!

FIG. 4. Geometric representation of the limiting cases of~a!
linelike projection and~b! fully massive projection as functions o
the resolution,. Dark gray boxes represent regions of perimet
area overlapping, while light gray boxes belong solely to the ar
01140
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-
r-

a

e
-

Massive box. Let us now consider a projection consistin
of a massive box for resolutions,e@1,̀ ), Fig. 4~b!. The
generalized forms expressing the perimeterP and the areaA
are

P[A5,, ,51

P54,24, A5,2, ,e@2,̀ !,

from which we write Eq.~7! as a function of,

dP~,51!52
log@,#

log@,#
52, ,51

dP~,52!52
log@4,24#

log@,2#
52, ,52 ~9!

dP~,>3!52
log@4,24#

log@,2#
,2, ,e@3,̀ !,

where the cases,51 (e5L) and ,52 (e5L/2) represent
two trivial solutions fordP that can be referred to as a path
logical effect caused by the low resolution. It is possible
see from Fig. 4~b! that PÞA for resolutions ,>3 (e
<L/3). Hence,dP decreases for increasing resolution. F
,→` (e→0) we obtain the lower limit

lim
,→`

dP5 lim
,→`

log@4,24#

log@,#
5 lim

,→`
S log@4#

log@,#
1

log@,21#

log@,# D51,

~10!

which represents an asymptotic case for infinitely high re
lutions of fully massive aggregates.

The limiting values ofdP are then represented bydP52
for linelike projections anddP51 for massive projections
and infinitely high resolution.

C. Correlation analysis of d0„S3… and dP„S2…

In order to investigate howdP(S2) relates tod0(S3), we
first normalize the projections of Eq.~4! with a reference
resolution, r . This is performed by using a magnificatio
factor f m defined as

f m5
, r

,
, ~11!

in such a way that

L2m5 f mL25, re;S2
( j ) . ~12!

We compute the average perimeter-based fractal dim
sion dP(S2

( j )) for the j th setS2
( j ) as follows:

dP~S2
( j )!5

1

3
@dP~S2,x

( j )!1dP~S2,y
( j ) !1dP~S2,z

( j )!#, ~13!

/
.

5-4
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METHOD FOR COMPUTING THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 69, 011405 ~2004!
wheredP is defined in Eq.~7!. In this computation we con
sider the external perimeter only, therefore neglecting in
empties.

Figure 5 shows the relationship betweendP(S2) and
d0(S3) for various resolutions,, r5$16,256,1024% pixels.
Therein, we have evaluated the boundary pointsZ at
d0(S3)53 ~massive box!,

Z165„3,z~, r516!…,

Z2565„3,z~, r5256!…, ~14!

Z10245„3,z~, r51024!…,

known by the analytical solution of Eq.~9!, where we have
applied the notation

z~, !5dP~S2 ,, !5
log@4,24#

log@,#
. ~15!

There are three major features that we can observe f
the results given in Fig. 5. The first is that low dimension
structures, with a high level of branching at the left-hand s
of the plot, possess projections with high values ofdP . In
contrast, high dimensional structures, with massive
round-shaped masses at the right-hand side of the plot,
low values ofdP . The second is thatdP(S2) does not reach
a constant value ford0(S3).2, in contrast to the rule of Eq
~2!. Rather, a hyperboliclike correlation does appear in
full range 1<d0(S3)<3. The third is that low resolutions
~16 pixels, for instance! move the points towards the upp
limit dP52. An increase in resolution lowers the points a
ymptotically towards the limitdP51, as shown in Eq.~10!.

These are valuable results that can be used to deri
semiempirical equation to related0(S3) and dP(S2) as a
function of the resolution and with a hyperboliclike structu

FIG. 5. Variation ofdP(S2
( j )) as a function ofd0(S3

( j ) ,L3) at
different resolutions, r .
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D. Semiempirical relation for dP„S2… and d0„S3…

By considering the fully known pointsZ of Eq. ~14! and
assuming a function of the form

dP~S2!5
a

@d0~S3!#2
1b, ~16!

we correlate the results in Fig. 5 by solving the followin
system in correspondence of the two pointsZ andK:

z~, !5
a

32
1b at Z5„3,z~, !…,

25
a

@k~, !#2
1b at K5„k~, !,2…, ~17!

with z(,) defined in Eq.~15!. The coordinatesk(,) of the
boundary pointsK at dP52 for a given resolution, have
been expressed as a function ofz(,) by fitting the data
points in Fig. 5 at the upper limitdP52:

k~, !5k„z~, !…5z~, !@z~, !21#11, ~18!

which results in

K165„k~, r516!,2…,

K2565„k~, r5256!,2…, ~19!

K10245„k~, r51024!,2….

Hence, the coefficientsa andb are

a~, !59S z~, !2
2@k~, !#229z~, !

@k~, !#229
D ,

b~, !5
2@k~, !#229z~, !

@k~, !#229
. ~20!

Finally, Eq. ~16! reads as a function ofd0(S3) and,,

dP~S2!5H a~, !

@d0~S3!#2
1b~, ! for d0~S3!.k„z~, !…,

2 for d0~S3!<k„z~, !….
~21!

Figure 6 shows the numerical results~dots! and the em-
pirical fit ~solid curves! obtained from Eq.~21! for resolu-
tions , r5$16,256,1024% pixels. The fit for, r516 pixels is
acceptable though not perfect (R250.970). A better fit is
obtained for resolutions, r5256 pixels (R250.975) and for
,51024 pixels (R250.973), see Fig. 7. The correlation co
efficientsR2 appear to have a maximum for a given reso
tion (, r5256 in this case!. Consequently, the reader ca
argue that the optimal determination ofd0(S3) occurs for a
resolution,,`. However, we note that the fluctuation o
the correlation coefficient is in the order of 1023; therefore,
5-5
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F. MAGGI AND J. C. WINTERWERP PHYSICAL REVIEW E69, 011405 ~2004!
statistically it is not relevant to infer any systematic trend
behavior. Besides this, the appreciable alignment of the
point supports the goodness of the technique proposed h

By inversion of Eq.~21!, we can write the following
equation:

d0~S3!5A a~, !

dP~S2!2b~, !
for dP~S2!,2, ~22!

which gives the 3D capacity dimension of the aggrega
from the perimeter-based fractal dimension of their proj
tions and the adopted resolution.

E. The case of infinite resolution

For ,→`, the coordinatesz(,) andk(,) of the boundary
pointsZ andK of Fig. 6 become

FIG. 6. Comparison of the numerical and analytical results fr
Eq. ~21! at different resolutions, r .
01140
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z`5 lim
,→`

z~, !5 lim
,→`

log@4,24#

log@,#
51,

k`5 lim
,→`

k„z~, !…5 lim
,→`

z~, !@z~, !21#1151. ~23!

and the coefficients of Eq.~20! are consequently

a5
9

8
, b5

7

8
. ~24!

Equation~22! in the asymptotic limit,→` then becomes

d0~S3!5A 9/8

dP~S2!27/8
for dP~S2!,2. ~25!

It matches the theoretical pointsZ5(3,z`) andK5(k`,2) as
shown in Fig. 6.

F. Critical resolution

Equation~22! allows us to detect a critical resolution,c
below which the computation ofd0(S3) is corrupted by low
resolution. Let us consider a fractal aggregate with capa
dimensiond0(S3)5d* . If we want to be able to detectd*
by means of Eq.~22!, then the condition

k~, !<d*

must be satisfied. By expanding we obtain

@z~, !#22z~, !112d* <0.

Its corresponding solution is

z1~d* !<z~, !<z2~d* !,
s
tion.
FIG. 7. Comparison of the parametrized values ofd0(S3) according to Eq.~22! versus the measured ones for the tested resolution, r

5$16,256,1024% pixels. Also the correlation coefficientsR2 are reported. The data points align along the bisector for exact, full correla
5-6
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METHOD FOR COMPUTING THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 69, 011405 ~2004!
z1~d* !5
12A2314d*

2
,

z2~d* !5
11A2314d*

2
. ~26!

If we consider that real aggregates possess capacity
mensions in the range 1<d* <3, then the discriminantD
52314d* is limited to the range 1<D<9. In fact, if
S3,R3 thend* <3 for obvious physical limits. At the sam
time, if d* ,1 then the aggregate would consist of, at lea
two disjointed, thin masses. This is not a unique aggreg
anymore but two or more individual aggregates, with ind
pendent fates. Therefore, for the considered range ofD, we
obtain the ranges of validity ofz1(d* ) andz2(d* ):

215z1
inf~d* 53!<z1~d* !<z1

sup~d* 51!50,

15z2
inf~d* 51!<z2~d* !<z2

sup~d* 53!52.

The quantityz(,) is z(,)5dP(S2) as defined in Eq.~15!;
it is proven to lie in the range@1,2# in Sec. III B. The result-
ing solutions ofz(,) are then limited to the positive range

1<z~, !<z2~d* !, ~27!

as represented in Fig. 8. In particular, since

z~, !>1 ;,e@1,̀ !,

we must satisfy only the condition

z~, !<z2~d* !. ~28!

Therefore, in order to compute,c we substitute Eqs.~15!
and ~26! into Eq. ~28!,

z~, !5
log@4,24#

log@,#
<

11A2314d*

2
5z2~d* !,

log@4,24#<
11A2314d*

2
log@,#,

~4,24!<, ~11A2314d* !/2. ~29!

FIG. 8. Representation of the solution interval of the quan
z(,). In particular, the range of validity ofz(,) is shown to be
bounded in the range@1,z2(d* )#.
01140
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Eventually, the transcendental function in, of Eq. ~29!
can be rewritten for simplicity in the following form:

f ~, !<g~,,d* !, ~30!

with f (,)5(4,24) andg(,,d* )5, (11A2314d* )/2. In Fig.
9 we have represented the critical resolutions,c computed
from the intersection off (,) andg(,,d* ) through Eq.~30!,
for aggregates of various capacity dimensionsd* in R3. Fig-
ure 9 provides a practical tool for computing the minimu
resolution required to be able to extractd0(S3) from dP(S2),
once the observer can estimate the minimum expec
d0(S3).

IV. CONCLUSION

Current theory of the projection of fractals does not
ways enable direct computation of the capacity dimension
fractal sets embedded inR3 from the capacity dimension o
projections inR2. This occurs in particular when the fracta
under investigation are aggregates, that is finite and clo
objects, with nonhomogeneous mass density distributions
general, theoretical research tends to refer mostly to ex
sive fractals. However, in practice finite fractals are mo
likely to occur. Fractal aggregates differ considerably fro
indefinitely extended fractals. We have given evidence of
impact of the finite extent of fractals by means of compa
sons of theoretical and numerical results in Figs. 2 and 3

For these reasons, we have developed a method, circ
venting the rule of Eq.~2! to obtain the 3D capacity dimen
sion of aggregates from their projections. We neglect
information of ‘‘capacity’’ d0(S2) present in the projections
S2, in favor of information concealed in theperimeterof the
projection solely. To this end, a correlation analysis has b
carried out to related0(S3) to dP(S2), using the perimeter-
based fractal dimensiondP in R2. The results show tha

FIG. 9. Representation of the functionsf (,) andg(,,d* ). The
intersection points define the critical resolution,c below which the
estimation ofd0(S3) through Eq.~21! is distorted by the low reso-
lution.
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d0(S3) and dP(S2) are related to each other by means o
hyperboliclike resolution-dependent function, defined in E
~21!.

The expression here proposed to computed0(S3) from
dP(S2) allows us to derive analytically a critical resolutio
below which d0(S3) cannot be calculated accurately. Th
has resulted in the nomogram of Fig. 9, which can be dire
employed to estimate,c .

The accurate extraction of the capacity dimension of fr
tal aggregates obtained with Eq.~22! does not mean, how
ever, that it can be successfully applied to any type of agg
gated structure. The concept ofuniversalityis here involved
for two reasons. The first is that Eq.~22! considers the infor-
mation of perimeter segmentation, so that the internal are
the projections can be of any type: Euclidian or no
Euclidian. For Euclidian aggregates, only the external s
face can be considered fractal, and not the complete ob
d
-

e

-

01140
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ly

-

e-

of
-
r-
ct,

thus there is no sense in computing a fractal dimension
regular~Euclidian! structure. The second reason is that DL
and CCA processes produce different aggregate geome
@10,21#. At the moment we cannot state whether the peri
eter segmentation is effectively capable of incorporating
formation on the geometrical structure in addition to the
pacity of the structure. Therefore, future investigation m
be oriented to understand whether Eq.~22! is valid for dif-
ferent aggregation kinematics~that is different structures!,
and not only for various capacity dimensions.
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