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The current theory of projections of fractals is considered in this paper with application to fractal aggregates.
In particular, this theory does not accurately enable the computation of the capacity dimension of three-
dimensional aggregates from the capacity dimension of their two-dimensional projections. Herein we propose
to compute the three-dimensional capacity dimension from the perimeter-based fractal dimension, using a
semiempirical equation, an approach not applied earlier.
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[. INTRODUCTION number of dimensiongall represented byl) is required to
describe statistical self-similar, nonhomogeneous fractals
Fractal geometry is widely recognized to be fundamentalmultifractal sets
in scaling a variety of properties of aggregates of various The dimensionalityd, has been further elaborated for ap-
nature. The fractal approach has been fruitfully employedplication purposes into the corresponding multifractal spec-
for instance, in sedimentologymud flocs, bed structure trum f(a) and singularity strengtl(q) [9,15-17. These
[1-3)), chemistry (polymers, colloidal aggregatest,s)), quantities describe any arbitrary mass—depsny distribution of
medicine(cancer growth, cell structufé]), cosmology(gal- & Nonhomogeneous fractdll7,18 and its growth rate

axy distributions and patterns at large sc&&8]), and many [_14’1%_23- The relevancefof evaluatirf]g t(;‘e fractalu prolger-l
other disciplines dealing with fractal aggregates. ties of aggregates stems irom those fundamenta’ works. In

In general, analysis of fractal aggregateihis based on s_ubstanfce, the p035|b|l|]Ey of Qetermlnm_g the fr%Ctal ?(mek?-
optical projections inR?. However, the transformation of sE)ns ? an taggrefgt?lte rom |tst projection W?ut :na ett. €

o . ’ . ) . characterization of the aggregate more complete. In particu-
projection?: R3— R? distorts the three-dimensionéD) in- ggreg P P

. , oo lar, the capacity dimensiothy should be accessed as it plays
formation of an aggregate, especially concerning its geomels e in the nonlinear relationship between the mdss an

ric _organization. Ong of the most convenient tools .to de'aggregate and its length scaleM ~ L%, and nevertheless in
scribe the geometric structure of a fractal set is they nymber of other quantities such as the effective density,
generalized dimensionalitst;, proposed by Hentschel and porosity, etc[3,5,23.

Procaccia if9]. It is defined as follows: if we consider an However, direct computation o, from projections of
covering CR" by means of boxes of size of a fractal of  real aggregates is limited by geometric constraints. This was
length scalel, thenN=(L/e)"=¢" is the total number of shown by early investigations which were addressed to un-
boxes in the domain. IN; is the number of measuring points derstand mathematically how projectioRsaffectd, [8,24].

in theith box andN; the total number of points of the fractal, In particular, Hunt and Kaloshif24] have elaborated th&®
then p;=N;/N; determines the probability of a measuring preserves the 3D information only for a limited range of
point lying in theith box. Consequently, the generalized di- momentsq (1<q=2), thus leaving unsolved questions re-

mensionality of thegth order is written as follows: lated tody, which have direct implication to applied sciences
and measurement techniques.

N The main contribution of this paper is to show that it is
1 |n21 (pi)° possible to extract the 3D capacity dimension of fractal ag-
d.= li - 1 gregates from their projections by following an alternative
a im : (1) . : -
1-9., Ine path. The paper is organized as follows. Section Il summa-

rizes a literature-based survey on the theoretical limits to
whereq is a moment that gives strength to the probability which d, is subject in the case of projections of nonhomo-
pi - The capacity dimensiodc [10], the information dimen-  geneousextensivefractals. Furthermore, we give numerical
sionsd, [11-13 and the correlation dimensiaiy [14] are  evidence that the application of the theory to nonhomoge-
special cases ofl;: dy=dc, d;=d;, andd,=dx, with  neousfinite fractals yields distorted results, especially for the
d,=<d;=<dy=n. A basic property of the generalized dimen- capacity dimensiod,. We infer that the finiteness of the sets
sionality is thatd,=constVq for fully self-similar and ho-  causes these distortion®al fractal aggregates in contrast to
mogeneous fractal§monofractal sefs while an infinite  extensive fractals Section Ill is dedicated to the analysis of
those results. In addition, we propose an analytical formula-
tion capable of circumventing the limits exposed in Sec. Il.
*Email address: f.maggi@ct.tudelft.nl This formulation is founded upon geometry arguments and
"Email address: han.winterwerp@wildelft.nl fitting numerical results.
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Il. PROJECTIONS AND GENERALIZED multifractal properties. Herein, we test the applicability of
DIMENSIONALITY Eqg. (2) on artificial aggregates.
We first generata, fractal aggregateS;C R® by means
of a simple algorithm which produces self-correlated random
Hunt and Kaloshij24] have observed that the projection structures with known capacity dimensidg This technique
P:R™M—R" of a fractalS,CR™ of generalized dimensional- s a static aggregation algorithm. Seed-by-seed diffusion or

A. Problem definition

ity dq(Sm) onto R" (with n<m), yields to cluster-cluster reactions are not accounted for. Starting with a
B o single(cubica) seedi =1, a second sedd=2 is placed ran-
dq(Sh="P(Sp)) =min{n, dq(Sm)}- 2 domly in one of the 3-by-3-by-3 free, neighbor locations.

Then, one of the existing seeds is chosen from an exponen-
tial distribution, and a new seed is attached to it. In this
algorithm, recent seeds$arge indexes) have higher prob-
abilities to receive a new seed. This procedure is repeated for
1000 seeds. The capacity dimensiy{S;) of the aggregate
under construction is tuned by means of the exponent of the
exponential distribution. The resulting s&gare aggregates
with few open branches, more similar to CCA aggregates
than DLA aggregategl0,21]. Then, setsS; are afterwards
projected along the three Cartesian directions, thus obtaining
the projections

If dq(Sm)>n then the projectior, has dimensionality
dq(Sy) =n, otherwised(S,) = dy(Sy). When the projection
has the same dimensionality as the origind}(S,)<n),
thenP is called adimension-preservingansformation. This
relation has been proven analytically[i24] only for values
of the momentg:1<g=<2. P is not dimension-preserving
for g=1 andqg>2. In other words, only the correlation di-
mensiond, and the infinite number of dimensions between
d, and the information dimensiaty are preserved. All other
dimensions are not preserved, the capacity dimengjoin-
cluded. This implies that for projections of real objects
(m=3 andn=2), the capacity dimensiody(S;) (q=0) {S(ZJ;},{S(ZJ'))/},{S(Z];}' (4
cannot be found from Ed2): ’ ' '

. with j={1, ... n,} the repetition index. Three examples of
do(S;) #mMin{2, do(S3)}- (8) s’ and their projections are given in Fig. 1. For each of the

o . 3n, projections, we compute the capacity dimensiynac-
It follows that we cannot use the 2D capacity d'mens'oncording to VicseK10]:

do(S,) of a projection to characterize the 3D capacity dimen-

sion do(S;) of the original object in a direct way, at least . log[N]

theoretically, even whedy(S;)<2. do(SYey.zp :X) = Jog[ X7’ 5)
Moreover, Eq.(2) is deduced from the literature to be

valid for indefinitely extensive fractals. However, no precisewhere N is the number of seeds in the projection aXd

distinction has been made in literature for finite fractals, such={_, 1., D, D5} are the length scales taken into accolnt.

as aggregates. For this reason, we must first consider whethigrthe size of the minimum hypercube envelop®gndD is

Eq. (2) is applicable to 2D projections of fractal aggregatesithe hydraulic diameter, irR?> and R®, respectively. The

because these arnhomogeneoufinite, andclosed(com-  |ength scalegL s, D3} C R3 are known from the construction

pach sets. Indeed, images of fractal aggregates consist of thef the aggregates while the length scélle ,D,} C R? result

complete closed sets, that is the sets themselves and thgipm the transformatiorP. Next, we compute the average

boundaries. Furthermore, such sets are self-similar only ovey. TR P ()N - h
S ' o apacity dimensiond of the projections for eac
limited ranges of length scales. This is in contrast to self- pacity o(S27) prol f

similar (mono fractal sets. Monofractals are, at least theo_aggregate as follows:

retically, open and homogeneous sets because any observa- _ 1 . . .

tion window replicates any other window, at any scale, dO(S(zl),X):§[d0(8(2{3(,X)+d0(S‘2{),X)+d0(S(2{;,X)].
according to the concept of self-similarity. The consequence ©)
of dealing with non-homogeneous finite and closed objects is

that the application of E(2) becomes less clear and liable gepending on the used length scales. The reason to consider

to divergencies and misunderstandifgg]. _ different length scales comes from a misuse of them in the
We therefore compare in the next section theoretical valyppjication to real cases.

puter simulations of nonhomogeneous random fractals. do(Ss,{L3,D3}), computed as a function of; and D

From this test we will learn that E@2) is not able to return solely.

accurate results, thus preventing the computatiod : . T ORY i .

fromdy(S,). Next, we pF;opose ag alternati\t)e semi—g()rr?ys))irical . The. relff\tlonshlp .bEtweEdO(S.(ZJ) ’X). and dd&’l‘?’)ﬁls
given in Fig. 2, while the relationship betweelg(S}’,X)

equation to computelo(S;) accurately. anddo(S{?,D3) is given in Fig. 3. Both these experimental
sets deviate largely from E) for all the length scales here
considered. In particular, Eq2) tends to overestimate the
Fractal aggregates are nonhomogeneous, finite, and closeehal values both for low- and high-dimensional aggregates.
random sets of connected seeds distributed within the do- Thus we have shown that, for nonhomogeneous, finite,
main. Furthermore, they are statistically self-similar with and closed fractal aggregates, E2).does not enable a direct

B. Application of Eq. (2) to artificial fractal aggregates
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FIG. 1. (a) Example of a high-fractal-dimension aggrege®§,, do(S§)=2.49. The projections show a massive and round-shaped
organization of the primary particleth) Example of a mid-fractal-dimension aggrega8§?, do(S{*¥)=2.09. The projections show a less
massive and irregular-shaped organisation of the primary parti@egxample of a low-fractal-dimension aggrega8:®, do(S:*?)
=1.81. The projections show a weak and irregular-shaped organization of the primary particles.

extraction ofdy(S;) from dy(S,), even fordg(S;)<2. This  other set belonging to the projection, which is independent or
was already stated in ER) and derived analytically ih24] nearly independent of the transformation: the contour of the

for extensive fractals. projected seS,. The contour is a subset of the surfacesef
The measure of the contour, that is the perimeter, does not
lil. DIRECT COMPUTATION OF  do(S;) FROM THE represent a capacity &. The perimeter, or better the pe-
PROJECTION S, rimeter segmentation reflects the roughness of the object in
R3.
A. Perimeter of fractal sets Herein, we investigate to which extent the information of

From the previous results, we have found confirmatiorthe structure ink® can be found in the projected, perimeter-
that information concerning theapacity (the capacity di- based fractal dimensiod , which is defined for instance in
mension, that is the space-filling abilitis polluted by the [21]. dp does not belongor give evidence of belongingo
projection itself, even fody(S;) <2. Hence, we analyze an- the set of dimensions id,. As a consequence, the theory of

21 . . . . . . . . 21 ! ' ' !
© Theorical Eq. 2
19 : 191 S 1
A1.8 B A1.8_ ...................................................................... -
< x
5(}):\1 ________________________________________________________________ i @ The e RELE SR i
~c : =}
v, 5 Vb AN ’ |
1, o <d (S(DL)> e i . ~ (S(J)L)>
: : o e <d (so L > | 0 3
: : : ) : - <«d(80L)>
150/ [ P . <d°(sﬁ D3)> SR 150 T s )D | ]
: : : : —— <d0(S 2)> e <d (S D2)>
1.4 .......................................... 4 1.4} . ' B
37 18 19 2 21 22 23 24 25 26 '35 1 15 2 25 3
0 0
d,S0.L,) d,80.0,)
FIG. 2. 2D capacity dimensiody(Sy’,X) of the projections FIG. 3. 2D capacity dimensiody(SY’,X) of the projections

S{ (dots as a function of the 3D capacity dimensidg(Sy’,L;).  SY’ (dot9 as a function of the 3D capacity dimensidg(Sy’,D3).
They have been compared to the theoretical relation, computedihey have been compared to the theoretical relation, computed
through Eq.(2) (solid line). through Eq.(2) (solid line).
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=1 =2 =3 =4 = Massive boxLet us now consider a projection consisting
of a massive box for resolutionée[1,2), Fig. 4b). The
9 generalized forms expressing the perim&end the are@
Ll ] are
\_///—Y\/
P=%P=z;=a P=A=¢, (=1
=1 =2 =3 =4 ==
P=4¢—4, A=(2 {(e[2),
b) . . .
- n E from which we write Eq(7) as a function oft
P=l, A=l ., |Og[€]
dp=2 P=40-4, A=l — — — —
dp=2 log(P)/log(A) dp(g_l)_zbg[f] -4 =1

FIG. 4. Geometric representation of the limiting cases@f

linelike projection andb) fully massive projection as functions of log[4¢—4]
the resolution¢. Dark gray boxes represent regions of perimeter/ dp(£=2)= ST =2 9
area overlapping, while light gray boxes belong solely to the area. log €]
o . ) logl4¢—4]
projection does not apply tdp, and therefore it is not sub dp(¢=3)=2 <2, (e[3%)
ject to the rule of Eq(2). However, it still gives information log[ €2] ' o

on the fractal structures of aggregates. For this reason, and

because of a lack of theoretical work dealing with this prob-where the caseé=1 (e=L) and¢=2 (e=L/2) represent
lem, we perform a simple numerical experiment on the cortwo trivial solutions fordp that can be referred to as a patho-
relation betweerdy(S{’,L3) anddp(SY), thus neglecting logical effect caused by the low resolution. It is possible to

the length scalek,, D,, andDs. see from Fig. &) that P#A for resolutions¢=3 (e
=<L/3). Hence,dp decreases for increasing resolution. For
B. Perimeter-based fractal dimension of the projections {—o (e—0) we obtain the lower limit
The penmeﬁer-based fractal dimensidp is defined ac- ' loglat—4]  [logl4] log[¢—1]
cording to[21]: lim dp= lim = lim + =1,
log(P] (mo e lOGLE] o \log[€]  log[€]
0g
P= 2l AT ™ (0
log[A]

which represents an asymptotic case for infinitely high reso-
_ lutions of fully massive aggregates.
where P and A represent the perimeter and the area of @ The limiting values ofd, are then represented lol=2

projection. Within our contex® is given by the number of  for Jinelike projections andlp=1 for massive projections
seeds within the projected area &P given by the number  and infinitely high resolution.

of seeds on the contour.

By means of simple geometry arguments, we compute the
values ofd for the two extreme cases of thin line and mas-
sive box projections. Let us therefore considereasovering In order to investigate howlp(S,) relates tody(S;), we
of the setS, of length scald_, by means of boxes of size ~ first normalize the projections of E¢4) with a reference
corresponding to a resolutioh=L,/e. The values ofd, ~ resolution€,. This is performed by using a magnification
then depend on the resolutidh as elaborated in the two factor f, defined as
following cases.

C. Correlation analysis of dy(S3) and dp(S,)

Thin line Let us consider the case of a projection which £ :ﬁ (11)
becomes a thin line for increasing resolutibg 1,), Fig. mog
4(a). In that case
in such a way that
P=A=(, Ce[lx), Lom=fmlo="0,eVSY. (12)

; : We compute the average perimeter-based fractal dimen-
and, using Eq(7), the resultin becomes .
9 Ea() ole siondp(SP) for the jth setSY) as follows:
log[P] _log[€]

A= 2i00[A] ~ 2logl €]

— 1 ' . :
2, telle). (8 dp(S)) = 3[dp(ST) +dp(SH) + ()], (13)
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2 ! : ! ! . ! T ! D. Semiempirical relation for dp(S,) and do(S3)

: © ' :
19F i B R S B :r:;ge : By considering the fully known pointg of Eq. (14) and
veb o 2% | 4 i-ee| |  assuming a function of the form
: : : 0Q - r: '
i ) dp(Sp)= ——+b (16)
P =——1D0,
A [do(sg,)]z
EX

we correlate the results in Fig. 5 by solving the following
system in correspondence of the two poidtandK:

<d

a
2(0)=5+b at Z=@2(0)),

: : ' ' ' : E a
1 : : : ' : ' ' : ' 2= +b at K=(k(¢),2), (17
1 12 14 16 18 22 24 26 28 3 [k(€)]?

with z(€) defined in Eq.(15). The coordinate&(¢) of the
boundary pointK at dp=2 for a given resolutiord have

been expressed as a function zf¢) by fitting the data
points in Fig. 5 at the upper limdp=2:

FIG. 5. Variation ofdp(SY’) as a function ofdy(S{’,L3) at
different resolution¥, .

whered; is defined in Eq(7). In this computation we con-
sider the external perimeter only, therefore neglecting inner k(€)=k(z(€))=z(€)[z(€)—1]+1, (18
empties.

Figure 5 shows the relationship betweeR(S,) and  which results in
do(S;) for various resolutions{,={16,256,1024 pixels.
Therein, we have evaluated the boundary poi@tsat Kie= (k(¢;=16),2),
do(S;3) =3 (massive box

K256: (k(gr:256)12)' (19)
Z16=(3.2(¢,=16)), K 1024= (K(£;=1024),2).
Z56=(32(€,=256)), (14) Hence, the coefficients andb are

2_
Z10pi= (32(€,=1024), a(t)=9 Z(e)_Z[k(f)] 9z(¢)
[k(€)]*-9

known by the analytical solution of E9), where we have

applied the notation _ 2[k(€)1>=9z(¢)

b(¢
(€) O]9 (20)
log[4¢—4
z(€)=dp(S,,€) = %- (19 Finally, Eq.(16) reads as a function afy(S;) and¢,
a(t)

There are three major features that we can observe from _—
the results given in Fig. 5. The first is that low dimensional ~ dp(S2)=1{ [do(S3)1?
structures, with a high level of branching at the left-hand side 2 for do(Ss) <k(z(£)).
of the plot, possess projections with high valuesdgef. In
contrast, high dimensional structures, with massive and
round-shaped masses at the right-hand side of the plot, have Figure 6 shows the numerical resu(tiots and the em-
low values ofdp . The second is thatp(S,) does not reach pirical fit (solid curve$ obtained from Eq(21) for resolu-

a constant value fally(S3)>2, in contrast to the rule of Eq. tions €,={16,256,102% pixels. The fit for{, =16 pixels is
(2). Rather, a hyperboliclike correlation does appear in theicceptable though not perfedR{=0.970). A better fit is
full range 1=dy(S;)<3. The third is that low resolutions obtained for resolution§, = 256 pixels R?=0.975) and for
(16 pixels, for instandemove the points towards the upper ¢ =1024 pixels R?=0.973), see Fig. 7. The correlation co-
limit dp=2. An increase in resolution lowers the points as-efficientsR? appear to have a maximum for a given resolu-
ymptotically towards the limitl,=1, as shown in Eq(10).  tion (€,=256 in this case Consequently, the reader can

These are valuable results that can be used to derive ague that the optimal determination @f(S;) occurs for a
semiempirical equation to relate,(S;) and dp(S,) as a  resolution{ <w. However, we note that the fluctuation of
function of the resolution and with a hyperboliclike structure.the correlation coefficient is in the order of 19 therefore,

+b(€) for do(S3)>k(z(€)),
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logl4¢—4
Z,=limz(¢)= Iimig[ ]= )
- ¢ lOQL]

ko= limk(z(0)= lim 2(0)[2(6)~1]+1=1. (23

{—o {—o0
and the coefficients of Eq20) are consequently

= o b= ! 24
a= 8’ =g (24)

Equation(22) in the asymptotic limi¥ —« then becomes

9/8
d —\/ f d 2. (2
(8= \ g5 e O Sz @

FIG. 6. Comparison of the numerical and analytical results from

Eq. (21) at different resolutiong, It matches the theoretical poinfs=(3,z..) andK=(k,,2) as

shown in Fig. 6.

statistically it is not relevant to infer any systematic trend or
behavior. Besides this, the appreciable alignment of the data
point supports the goodness of the technique proposed here. Equation(22) allows us to detect a critical resolutidh
By inversion of Eq.(21), we can write the following below which the computation afy(S;) is corrupted by low
equation: resolution. Let us consider a fractal aggregate with capacity
dimensiondy(S3) =d*. If we want to be able to detect*
by means of Eq(22), then the condition

/ a(t) -

must be satisfied. By expanding we obtain

which gives the 3D capacity dimension of the aggregates ) .
from the perimeter-based fractal dimension of their projec- [z(£)]"—2z(£)+1-d*<0.
tions and the adopted resolution.

F. Critical resolution

Its corresponding solution is

E. The case of infinite resolution Z,(d*)=z(€)<z,(d*),

For ¢ —«, the coordinateg(¢) andk(¢) of the boundary
pointsZ andK of Fig. 6 become with

L[ o I=2s6pixel, RP=0075 | D i sl.| o 1=1024pixel, 0973

S,

Computed d

A S S S S S R T S SR S S S R R S R O I
112 14 16 18 2 22 24 26 28 3 1 12 14 16 18 2 22 24 26 28 3 1 12 14 16 18 2 22 24 26 28 3
Measured do(Ss) Measured do(Ss) Measured do(sa)

FIG. 7. Comparison of the parametrized valuesigfS;) according to Eq(22) versus the measured ones for the tested resolufipns
={16,256,102% pixels. Also the correlation coefficien® are reported. The data points align along the bisector for exact, full correlation.
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z™ % z,of z7®
| ; | | |
| | | | Range of I
| | | | validity of () |
| \ —> '
|
l | ‘ Solutions for z(1) ‘ !
| L | | :
| -~ [ [ =
| Range of | | | Rangeof |
[ validity of z; 1 N | validity of z; N
™ i g I~ g
L | L L Lo
| ! ‘ ] g
-1 z,(d*) 0 1 zy(d*) 2

FIG. 8. Representation of the solution interval of the quantity

z(€). In particular, the range of validity of(¢) is shown to be
bounded in the ranggl,z,(d*)].

. 1-\-3+4d*

zy(d ):f,

1+—3+4d*
zz(d*)zf. (26)

PHYSICAL REVIEW E 69, 011405 (2004

f(l), g(l.d*)

-
(=)
~
T

Critical resolution Ic

FIG. 9. Representation of the function&’) andg(¢,d*). The
intersection points define the critical resolutibnbelow which the
estimation ofdy(S;) through Eq.(21) is distorted by the low reso-

If we consider that real aggregates possess capacity diation.

mensions in the range<ld* <3, then the discriminani
=—3+4d* is limited to the range £A=<9. In fact, if

Eventually, the transcendental function 4nof Eq. (29

S;CR?® thend* <3 for obvious physical limits. At the same can be rewritten for simplicity in the following form:
time, if d* <1 then the aggregate would consist of, at least,

two disjointed, thin masses. This is not a unique aggregate

f(€)<g(€,d*), (30)

anymore but two or more individual aggregates, with inde-

pendent fates. Therefore, for the considered rangk,ofve
obtain the ranges of validity af;(d*) andz,(d*):

—1=2M(d*=3)<z,(d*)<Z"Rd*=1)=0,
1=20(d* =1)<z,(d*)<z"Nd*=3)=2.

The quantityz(€) is z(€) =dp(S,) as defined in Eq(15);
it is proven to lie in the rangEl,2] in Sec. Il B. The result-

ing solutions ofz(¢) are then limited to the positive range:

1<sz(€)<z,(d*), (27
as represented in Fig. 8. In particular, since
2(0)=1 Vlelm),
we must satisfy only the condition
z2(0)<z,(d*). (28

Therefore, in order to computg, we substitute Eqg15)
and(26) into Eq. (28),

_logi4¢—4] _1+-3+4d*

20="oq007 = 2

=27,(d*),

1+—3+4d*
log[4¢ —4]< flogw],

(46_4)$€(1+ \/—3+4d*)/2. (29)

with f(€)=(4¢—4) andg(¢,d*)=¢1+V=3+4d")2 | Fig,

9 we have represented the critical resolutidscomputed
from the intersection of (¢) andg(¢,d*) through Eq.(30),

for aggregates of various capacity dimensidhisin R3. Fig-

ure 9 provides a practical tool for computing the minimum
resolution required to be able to extrag(S;) from dp(S,),
once the observer can estimate the minimum expected

do(S3)-

IV. CONCLUSION

Current theory of the projection of fractals does not al-
ways enable direct computation of the capacity dimension of
fractal sets embedded iR® from the capacity dimension of
projections inR?. This occurs in particular when the fractals
under investigation are aggregates, that is finite and closed
objects, with nonhomogeneous mass density distributions. In
general, theoretical research tends to refer mostly to exten-
sive fractals. However, in practice finite fractals are more
likely to occur. Fractal aggregates differ considerably from
indefinitely extended fractals. We have given evidence of the
impact of the finite extent of fractals by means of compari-
sons of theoretical and numerical results in Figs. 2 and 3.

For these reasons, we have developed a method, circum-
venting the rule of Eq(2) to obtain the 3D capacity dimen-
sion of aggregates from their projections. We neglect the
information of “capacity” dy(S,) present in the projections
S,, in favor of information concealed in thgerimeterof the
projection solely. To this end, a correlation analysis has been
carried out to relately(S;) to dp(S,), using the perimeter-
based fractal dimensiodp in R%. The results show that
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do(S;) anddp(S,) are related to each other by means of athus there is no sense in computing a fractal dimension of a
hyperboliclike resolution-dependent function, defined in Eq.regular(Euclidian structure. The second reason is that DLA
(22). and CCA processes produce different aggregate geometries
The expression here proposed to comptig€S;) from  [10,21]. At the moment we cannot state whether the perim-
dp(S,) allows us to derive analytically a critical resolution eter segmentation is effectively capable of incorporating in-
below which dy(S;) cannot be calculated accurately. This formation on the geometrical structure in addition to the ca-
has resulted in the nomogram of Fig. 9, which can be directlyacity of the structure. Therefore, future investigation must
employed to estimaté. . be oriented to understand whether E2p) is valid for dif-
The accurate extraction of the capacity dimension of fracferent aggregation kinematidghat is different structures
tal aggregates obtained with E®2) does not mean, how- and not only for various capacity dimensions.
ever, that it can be successfully applied to any type of aggre-
gated structure. The concept whiversalityis here involved ACKNOWLEDGMENTS
for two reasons. The first is that E@2) considers the infor-
mation of perimeter segmentation, so that the internal area of The authors thank Professor Jurjen Battjes for his critical
the projections can be of any type: Euclidian or non-suggestions addressed during the development of the content
Euclidian. For Euclidian aggregates, only the external surexposed in this paper. This study was financed with Delft
face can be considered fractal, and not the complete objedtiniversity Research funds through the BEO Program.
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